Bubbles and crises ECON4335 Lecture 9

Asbjørn Rødseth

November 1, 2011

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

A. Martin and J. Ventura: "Theoretical notes on bubbles and the current crisis". ECB 2011 Sections 3 and 4 can be skipped Combines bubbles and financial frictions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- Martin-Ventura model
- Equilbrium without bubbles
- Effects of financial frictions
- Equilibrium with rational bubbles
- When bubbles break
- Rational bubbles vs irrational exuberance

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Consumers

- Live for two periods
- Each supplies one unit of labor in the first period
- Save all wage income for consumption in the second period

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Are risk neutral
- Share ε are entrepreneurs

New and old firms

- Entrepreneurs: Invest in new firms, borrow
- Non-Entrepreneurs: Invest in old firms, lend to entrepreneurs
- Entrepreneurs are more efficient in investment
- A real investment $z_{j,t}$, yields
 - ▶ for a non-entreprenueur: z_{j,t} units of capital
 - ▶ for an entrpreneur: $\pi_t z_{j,t}$ units of capital where $\pi_t > 1$

Capital accumulates according to

$$k_{j,t+1} = z_{j,t} + (1-\delta)k_{j,t},$$
 for old firm (1)

$$k_{j,t+1} = \pi_t z_{j,t},$$
 for new firm (2)

Only old firms produce final goods. Production functions:

$$y_{j,t} = \ell_{j,t}^{1-\alpha} k_{j,t}^{\alpha} \tag{3}$$

(ロ) (型) (E) (E) (E) (O)

The fundamental value of a firm

The fundamental value of a firm is the value of the capital stock that belongs to the firm

$$V_{j,t} = (1-\delta)k_{j,t} \tag{4}$$

ション ふゆ アメリア メリア しょうくの

 V_{j,t} is the price of an old firm in period t after production has been carried out and depreciation has taken place, but before the new owner has added his new real investments to the capital stock

Some macro relations

Per worker production function in macro

$$y_t = \ell_t^{1-\alpha} k_t^{\alpha} = k_t^{\alpha} \tag{5}$$

 y_t , k_t and ℓ_t are per worker, $\ell_t = 1$ Since non-entrepreneurs demand the same gross return, R_{t+1} , from buying shares in old firms and lending to entrepreneurs;

$$R_{t+1} = 1 + \alpha k_{t+1}^{\alpha - 1} - \delta = \alpha k_{t+1}^{\alpha - 1} + 1 - \delta$$
(6)

Labor is paid its marginal product

$$w_t = (1 - \alpha)k_t^{\alpha} \tag{7}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Rate of return on share in old firm

For the record, can be skipped Revenues/Outlays for investor who buys firm:

$$\frac{y_{t+1} - w_{t+1} + V_{t+1}}{V_t + k_{t+1} - k_t(1-\delta)} = \frac{k_{t+1}^{\alpha} - (1-\alpha)k_{t+1}^{\alpha} + k_{t+1}(1-\delta)}{k_t(1-\delta) + k_{t+1} - k_t(1-\delta)}$$
$$= \frac{\alpha k_{t+1}^{\alpha} + (1-\delta)k_{t+1}}{k_{t+1}} = \alpha k_{t+1}^{\alpha-1} + 1 - \delta = R_{t+1}$$
(8)

When firms are bought and sold at their fundamental values, the investor gets the real interest rate in return

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Entrepreneurs: The Credit Constraints

Borrowing constraint:

$$\underbrace{R_{t+1}f_{j,t}}_{a} \leq \underbrace{\Phi_{t+1}}_{b} [\underbrace{\alpha k_{t+1}^{\alpha-1}}_{c}, \underbrace{\pi_{t}}_{d}, \underbrace{(f_{j,t}+w_{t})}_{e} + \underbrace{V_{j,t+1}}_{f}]$$
(9)

- a) Repayment on loan $f_{j,t}$
- b) Financial friction $\Phi_{t+1} < 1$
- c)-f) Gross return next period
 - c) Marginal product of capital $(= R_{t+1} (1 \delta))$
 - d) Efficiency of investment
 - e) Amount invested = loan + wage income
 - f) V_{t+1} revenue from sale of firm

Since $\pi_t > 1$ entrepreneur can always get higher return than non-entrepreneur \Longrightarrow Entrepreneur will always borrow as much as possible.

▲ 臣 ▶ ▲ 臣 ▶ 臣 • • • • • •

If $\Phi_{t+1}\pi_t < 1$, borrowing constraint will be effective.

Entrepreneurs: The Credit Constraints

$$R_{t+1}f_{j,t} = \Phi_{t+1}[(R_{t+1} - 1 + \delta)\underbrace{\pi_t(f_{j,t} + w_t)}_{k_{j,t+1}} + V_{j,t+1}]$$
(10)

 $R_{t+1}f_{j,t} = \Phi_{t+1}[R_{t+1}\pi_t(f_{j,t} + w_t) - (1-\delta)k_{j,t+1} + (1-\delta)k_{j,t+1}]$

$$R_{t+1}f_{j,t} = \Phi_{t+1}R_{t+1}\pi_t f_{j,t} + \Phi_{t+1}R_{t+1}\pi_t w_t$$

Solve for $f_{j,t}$:

$$f_{j,t} = \frac{\Phi_{t+1}\pi_t}{1 - \Phi_{t+1}\pi_t} w_t > 0 \quad \text{for} \quad \Phi_{t+1}\pi_t < 1$$
(11)

- Borrowing is proportional to wage income
- Constraint is effective only when financial frictions are strong relative to the efficiency advantage of entrepreneurs

Dynamics of the economy's capital stock.

$$k_{t+1} = w_t + \varepsilon(\pi_t - 1)z_{j,t} \tag{12}$$

 $k_{t+1} =$ wages (savings)

+ gain from entrepreneurs doing part of the investment Typical entrepreneur invests

$$z_{j,t} = f_{j,t} + w_t = \frac{\Phi_{t+1}\pi_t}{1 - \Phi_{t+1}\pi_t}w_t + w_t = \frac{1}{1 - \Phi_{t+1}\pi_t}w_t$$

Inserted in 12

$$k_{t+1} = \left[1 + \frac{\varepsilon(\pi_t - 1)}{1 - \Phi_{t+1}\pi_t}\right] (1 - \alpha) k_t^{\alpha} \tag{13}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Effects of shocks

$$k_{t+1} = \left[1 + \frac{\varepsilon(\pi_t - 1)}{1 - \Phi_{t+1}\pi_t}\right] (1 - \alpha) k_t^{\alpha}$$

- More efficient entrepreneurs (higher π_t) \rightarrow more growth
- Less financial frictions (higher Φ_t) \rightarrow more growth

With π_t and Φ_{t+1} constant, economy goes to steady state characterized by $k_{t+1} = k_t = k_*$ or

$$\alpha k_*^{\alpha-1} = \frac{\alpha}{1-\alpha} \cdot \frac{\epsilon(\pi_*-1)}{\epsilon(\pi_*-1)+1-\Phi_*\pi_*}$$
(14)

ション ふゆ く は マ く ほ マ く し マ

- Higher $\pi \rightarrow More$ capital
- Higher $\Phi \rightarrow More capital$

Bubbles

Value of firm with bubble:

$$V_{j,t} = (1 - \delta)k_{j,t} + b_{j,t}$$
 (15)

ション ふゆ く は マ く ほ マ く し マ

 $(1 - \delta)k_{j,t} =$ fundamental, $b_{j,t} =$ bubble

- Non-entrepreneurs have to pay more for firms
- Entrepreneurs get more for new firms and get more credit
- Some savings are diverted from real investment to consumption of the old
- More real investment is undertaken by the most efficient investors
- Total effect on real investment ambiguous

Requirements for a rational bubble

Bubble must have expected return equal to interest rate

$$\frac{E_t b_{j,t+1}}{b_{j,t}} = E_t R_{t+1}$$
(16)

 Bubble should never become too large for the young to purchase

(17)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bubbles and the credit constraint

New firm at t, value at t + 1:

$$V_{j,t+1} = (1 - \delta)k_{j,t+1} + E_t b_{j,t+1}^N$$
(18)

The basis for getting loans is augmented by the present value of the bubble:

$$f_{j,t} = \frac{\Phi_{t+1}\pi_t}{1 - \Phi_{t+1}\pi_t} \left[w_t + \frac{E_t b_{j,t+1}^N}{R_{t+1}} \right]$$
(19)

. .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Total investment in new firm

$$z_{j,t} = f_{j,t} + w_t = \frac{1}{1 - \Phi_{t+1}\pi_t} w_t + \underbrace{\frac{\Phi_{t+1}\pi_t}{1 - \Phi_{t+1}\pi_t} \cdot \frac{E_t b_{j,t+1}^N}{R_{t+1}}}_{a} \quad (20)$$

a: additional loan and investment because of bubble.

Capital accumulation

$$k_{t+1} = w_t \underbrace{-b_t - b_t^N}_{s} + \frac{\varepsilon(\pi_t - 1)}{1 - \Phi_{t+1}\pi_t} w_t + \underbrace{\frac{\varepsilon(\pi_t - 1)}{1 - \Phi_{t+1}\pi_t} \cdot \frac{E_t b_{j,t+1}^N}{R_{t+1}}}_{b}$$
(21)

a: savings go to buy bubbles instead of real investment

b: entrepreneurs get to do more of the investment

$$k_{t+1} = \left[1 + \frac{\varepsilon(\pi_t - 1)}{1 - \Phi_{t+1}\pi_t}\right] (1 - \alpha) k_t^{\alpha} + \frac{\varepsilon(\pi_t - 1)}{1 + \Phi_{t+1}\pi_t} \cdot \frac{E_t b_{j,t+1}^N}{\alpha k_{t+1}^{\alpha - 1} + 1 - \delta} - b_t - b_t'$$
(22)

Evolution of aggregate bubble

$$E_t b_{t+1} = R_{t+1} (b_t + b_t^N) = (\alpha k_{t+1}^{\alpha - 1} + 1 - \delta) (b_t + b_t^N)$$
(23)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Bubbly episodes - an example

- Probability of bubble ending in period t constant equal to p
- Bubble starts with $b_t^N = b^N > 0$
- While bubble goes on $b_t^N = nb_t$, n > 0
- Probability of a second bubble starting is negligible
- Auxiliary assumptions:

$$\delta = 1, \quad \Phi_t = \Phi, \quad \pi_t = \pi \tag{24}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The dynamics of the aggregate bubble

Expected growth in aggregate bubble comes both from old and new firms:

$$E_t b_{t+1} = R_{t+1} (1+n) b_t \tag{25}$$

Since bubble breaks with probability p

$$E_t b_{t+1} = p \cdot 0 + (1-p) b_{t+1}^c$$
(26)

where b_{t+1}^c is value of bubble if it continues. Combining the two equations gives

$$b_{t+1}^c = [R_{t+1}(1+n)/(1-p)] b_t$$
 (27)

A bubble that continues grows faster than the interest rate

Dynamics of bubble continued

Define share of bubble in savings $x_t = b_t/w_t$ If bubble continues:

$$x_{t+1} = \frac{b_{t+1}^c}{w_{t+1}} = \frac{R_{t+1}w_t}{w_{t+1}} \cdot \frac{1+n}{1+p} x_t$$
(28)

By 1. order conditions $R_{t+1}/w_{t+1} = \alpha/(1-\alpha)k_{t+1}$. Hence

$$\mathbf{x}_{t+1} = \frac{\alpha}{1-\alpha} \cdot \frac{1+n}{1-p} \cdot \frac{w_t}{k_{t+1}} \mathbf{x}_t \tag{29}$$

 k_{t+1}/w_t can be found from (21). Result

$$x_{t+1} = \frac{\frac{\alpha}{1-\alpha} \cdot \frac{1+n}{1-p} x_t}{1 + \frac{\varepsilon(\pi-1)}{1-\Phi\pi} + \left(\frac{(\pi-1)\Phi n}{1-\Phi\pi} - 1\right) (1+n) x_t}$$
(30)

Single equation determining evolution of bubble until it collapses. Share independent of k_t .

Path for capital stock

From (21) and definition of x_t : $k_{t+1} = \left[1 + \frac{\varepsilon(\pi - 1)}{1 - \Phi\pi} - \left(1 - \frac{\Phi(\pi - 1)n}{1 - \Phi\pi}\right)(1 + n)x_t\right](1 - \alpha)k_t^{\alpha}$ (31)

Two types of bubbles:

Contractionary

$$\frac{\Phi(\pi-1)n}{1-\Phi\pi} < 1$$

Bubbles reduce capital stock and raise interest rates

Expansionary

$$\frac{\Phi(\pi-1)n}{1-\Phi\pi}>1$$

Strong increase in loans to entrepreneurs, many new bubbles. Bubbles raise capital stock, lowers interest rates.

Contractionary bubble

$$rac{\Phi(\pi-1)n}{1-\Phi\pi} < 1$$

- Denominator in the equation for the evolution of the bubble share (30)may be negative if x_t is high.
- Negative denominator signals that the bubble is already too high to be absorbed by the investors.
- ► The initial value of a rational bubble must below x̄ where x̄ is the value of x_t that makes the denominator in (30) zero.
- ► A stationary equilibrium for x_t with a bubble share, 0<x_{*} < x̄ may exist, but in that case it is unstable.
- The only sustainable bubbles are those that are expected to decrease relative to GDP over time.
- This means the (net) interest rate has to be below the growth rate of the economy, or below zero in our example.
- Even this kind of bubble can burst, but there is no expansion of output before that.

Les relevant for current crisis

Expansionary bubble

$$\frac{\Phi(\pi-1)n}{1-\Phi\pi}>1$$

Bubbles lead to strong credit expansion

- Made possible by financial frictions
- ► A stable stationary equilibrium for x_t with 0 < x_{*} < 1 may exist.</p>

ション ふゆ く は マ く ほ マ く し マ

- Bubbles may start low and grow for a long time
- AS the bubbles grow, interst rate goes down

More relevant for current crisis